The generator matrix 1 0 1 1 1 X+2 1 1 0 1 1 X+2 1 1 0 1 1 X+2 1 1 0 1 1 X+2 1 1 1 1 2 X 1 1 1 1 2 X 1 1 1 1 1 1 1 1 2 X 2 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 X+1 X+2 3 1 0 X+1 1 X+2 3 1 0 X+1 1 X+2 3 1 0 X+1 1 X+2 3 1 2 X X+3 1 1 1 2 X X+3 1 1 1 2 X 2 X X+3 1 X+3 1 1 1 1 1 0 X+2 0 X+2 0 0 X+2 X+2 2 2 2 X X 2 X X 0 0 2 0 2 0 2 0 2 2 0 2 0 0 0 2 0 0 2 2 2 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 0 2 2 0 2 0 2 2 2 0 0 2 0 2 0 0 0 0 2 2 2 2 0 0 0 2 2 2 2 2 2 0 0 0 2 2 0 0 0 0 2 0 2 0 2 2 0 2 0 2 0 2 0 0 2 2 0 0 2 2 0 0 2 0 2 2 0 2 0 0 2 0 2 2 0 0 0 2 2 generates a code of length 64 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 64. Homogenous weight enumerator: w(x)=1x^0+253x^64+2x^96 The gray image is a code over GF(2) with n=256, k=8 and d=128. This code was found by Heurico 1.16 in 0.11 seconds.